Copied to
clipboard

G = C42.234D10order 320 = 26·5

54th non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.234D10, (D4×Dic5)⋊30C2, (Q8×Dic5)⋊19C2, C4.4D419D5, (D5×C42)⋊10C2, D103Q832C2, (C2×D4).175D10, C202D4.13C2, (C2×Q8).138D10, C22⋊C4.74D10, C20.6Q820C2, Dic54D433C2, D10.15(C4○D4), C20.125(C4○D4), C4.38(D42D5), (C4×C20).187C22, (C2×C20).504C23, (C2×C10).224C24, D10.12D445C2, C23.46(C22×D5), Dic5.74(C4○D4), (D4×C10).157C22, C23.D1041C2, C4⋊Dic5.234C22, (C22×C10).54C23, (Q8×C10).128C22, C22.245(C23×D5), C23.D5.57C22, D10⋊C4.36C22, C23.11D1019C2, C59(C23.36C23), (C2×Dic5).377C23, (C4×Dic5).142C22, C10.D4.70C22, (C22×D5).228C23, (C22×Dic5).144C22, C2.80(D5×C4○D4), C10.191(C2×C4○D4), (C5×C4.4D4)⋊16C2, C2.56(C2×D42D5), (C2×C4×D5).381C22, (C2×C4).301(C22×D5), (C2×C5⋊D4).62C22, (C5×C22⋊C4).66C22, SmallGroup(320,1352)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.234D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C42 — C42.234D10
C5C2×C10 — C42.234D10
C1C22C4.4D4

Generators and relations for C42.234D10
 G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=ab2, cbc-1=dbd-1=a2b, dcd-1=a2c-1 >

Subgroups: 734 in 234 conjugacy classes, 99 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C23.36C23, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C2×C4×D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, C20.6Q8, D5×C42, C23.11D10, C23.D10, Dic54D4, D10.12D4, D4×Dic5, C202D4, Q8×Dic5, D103Q8, C5×C4.4D4, C42.234D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, C22×D5, C23.36C23, D42D5, C23×D5, C2×D42D5, D5×C4○D4, C42.234D10

Smallest permutation representation of C42.234D10
On 160 points
Generators in S160
(1 135 33 110)(2 114 34 88)(3 137 35 102)(4 116 36 90)(5 139 37 104)(6 118 38 82)(7 131 39 106)(8 120 40 84)(9 133 31 108)(10 112 32 86)(11 140 50 105)(12 119 41 83)(13 132 42 107)(14 111 43 85)(15 134 44 109)(16 113 45 87)(17 136 46 101)(18 115 47 89)(19 138 48 103)(20 117 49 81)(21 95 143 55)(22 79 144 64)(23 97 145 57)(24 71 146 66)(25 99 147 59)(26 73 148 68)(27 91 149 51)(28 75 150 70)(29 93 141 53)(30 77 142 62)(52 155 92 122)(54 157 94 124)(56 159 96 126)(58 151 98 128)(60 153 100 130)(61 156 76 123)(63 158 78 125)(65 160 80 127)(67 152 72 129)(69 154 74 121)
(1 100 16 73)(2 51 17 69)(3 92 18 75)(4 53 19 61)(5 94 20 77)(6 55 11 63)(7 96 12 79)(8 57 13 65)(9 98 14 71)(10 59 15 67)(21 140 158 118)(22 106 159 83)(23 132 160 120)(24 108 151 85)(25 134 152 112)(26 110 153 87)(27 136 154 114)(28 102 155 89)(29 138 156 116)(30 104 157 81)(31 58 43 66)(32 99 44 72)(33 60 45 68)(34 91 46 74)(35 52 47 70)(36 93 48 76)(37 54 49 62)(38 95 50 78)(39 56 41 64)(40 97 42 80)(82 143 105 125)(84 145 107 127)(86 147 109 129)(88 149 101 121)(90 141 103 123)(111 146 133 128)(113 148 135 130)(115 150 137 122)(117 142 139 124)(119 144 131 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 33 32)(2 31 34 9)(3 8 35 40)(4 39 36 7)(5 6 37 38)(11 49 50 20)(12 19 41 48)(13 47 42 18)(14 17 43 46)(15 45 44 16)(21 142 143 30)(22 29 144 141)(23 150 145 28)(24 27 146 149)(25 148 147 26)(51 98 91 58)(52 57 92 97)(53 96 93 56)(54 55 94 95)(59 100 99 60)(61 79 76 64)(62 63 77 78)(65 75 80 70)(66 69 71 74)(67 73 72 68)(81 82 117 118)(83 90 119 116)(84 115 120 89)(85 88 111 114)(86 113 112 87)(101 133 136 108)(102 107 137 132)(103 131 138 106)(104 105 139 140)(109 135 134 110)(121 151 154 128)(122 127 155 160)(123 159 156 126)(124 125 157 158)(129 153 152 130)

G:=sub<Sym(160)| (1,135,33,110)(2,114,34,88)(3,137,35,102)(4,116,36,90)(5,139,37,104)(6,118,38,82)(7,131,39,106)(8,120,40,84)(9,133,31,108)(10,112,32,86)(11,140,50,105)(12,119,41,83)(13,132,42,107)(14,111,43,85)(15,134,44,109)(16,113,45,87)(17,136,46,101)(18,115,47,89)(19,138,48,103)(20,117,49,81)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,16,73)(2,51,17,69)(3,92,18,75)(4,53,19,61)(5,94,20,77)(6,55,11,63)(7,96,12,79)(8,57,13,65)(9,98,14,71)(10,59,15,67)(21,140,158,118)(22,106,159,83)(23,132,160,120)(24,108,151,85)(25,134,152,112)(26,110,153,87)(27,136,154,114)(28,102,155,89)(29,138,156,116)(30,104,157,81)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,143,105,125)(84,145,107,127)(86,147,109,129)(88,149,101,121)(90,141,103,123)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,33,32)(2,31,34,9)(3,8,35,40)(4,39,36,7)(5,6,37,38)(11,49,50,20)(12,19,41,48)(13,47,42,18)(14,17,43,46)(15,45,44,16)(21,142,143,30)(22,29,144,141)(23,150,145,28)(24,27,146,149)(25,148,147,26)(51,98,91,58)(52,57,92,97)(53,96,93,56)(54,55,94,95)(59,100,99,60)(61,79,76,64)(62,63,77,78)(65,75,80,70)(66,69,71,74)(67,73,72,68)(81,82,117,118)(83,90,119,116)(84,115,120,89)(85,88,111,114)(86,113,112,87)(101,133,136,108)(102,107,137,132)(103,131,138,106)(104,105,139,140)(109,135,134,110)(121,151,154,128)(122,127,155,160)(123,159,156,126)(124,125,157,158)(129,153,152,130)>;

G:=Group( (1,135,33,110)(2,114,34,88)(3,137,35,102)(4,116,36,90)(5,139,37,104)(6,118,38,82)(7,131,39,106)(8,120,40,84)(9,133,31,108)(10,112,32,86)(11,140,50,105)(12,119,41,83)(13,132,42,107)(14,111,43,85)(15,134,44,109)(16,113,45,87)(17,136,46,101)(18,115,47,89)(19,138,48,103)(20,117,49,81)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,16,73)(2,51,17,69)(3,92,18,75)(4,53,19,61)(5,94,20,77)(6,55,11,63)(7,96,12,79)(8,57,13,65)(9,98,14,71)(10,59,15,67)(21,140,158,118)(22,106,159,83)(23,132,160,120)(24,108,151,85)(25,134,152,112)(26,110,153,87)(27,136,154,114)(28,102,155,89)(29,138,156,116)(30,104,157,81)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,143,105,125)(84,145,107,127)(86,147,109,129)(88,149,101,121)(90,141,103,123)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,33,32)(2,31,34,9)(3,8,35,40)(4,39,36,7)(5,6,37,38)(11,49,50,20)(12,19,41,48)(13,47,42,18)(14,17,43,46)(15,45,44,16)(21,142,143,30)(22,29,144,141)(23,150,145,28)(24,27,146,149)(25,148,147,26)(51,98,91,58)(52,57,92,97)(53,96,93,56)(54,55,94,95)(59,100,99,60)(61,79,76,64)(62,63,77,78)(65,75,80,70)(66,69,71,74)(67,73,72,68)(81,82,117,118)(83,90,119,116)(84,115,120,89)(85,88,111,114)(86,113,112,87)(101,133,136,108)(102,107,137,132)(103,131,138,106)(104,105,139,140)(109,135,134,110)(121,151,154,128)(122,127,155,160)(123,159,156,126)(124,125,157,158)(129,153,152,130) );

G=PermutationGroup([[(1,135,33,110),(2,114,34,88),(3,137,35,102),(4,116,36,90),(5,139,37,104),(6,118,38,82),(7,131,39,106),(8,120,40,84),(9,133,31,108),(10,112,32,86),(11,140,50,105),(12,119,41,83),(13,132,42,107),(14,111,43,85),(15,134,44,109),(16,113,45,87),(17,136,46,101),(18,115,47,89),(19,138,48,103),(20,117,49,81),(21,95,143,55),(22,79,144,64),(23,97,145,57),(24,71,146,66),(25,99,147,59),(26,73,148,68),(27,91,149,51),(28,75,150,70),(29,93,141,53),(30,77,142,62),(52,155,92,122),(54,157,94,124),(56,159,96,126),(58,151,98,128),(60,153,100,130),(61,156,76,123),(63,158,78,125),(65,160,80,127),(67,152,72,129),(69,154,74,121)], [(1,100,16,73),(2,51,17,69),(3,92,18,75),(4,53,19,61),(5,94,20,77),(6,55,11,63),(7,96,12,79),(8,57,13,65),(9,98,14,71),(10,59,15,67),(21,140,158,118),(22,106,159,83),(23,132,160,120),(24,108,151,85),(25,134,152,112),(26,110,153,87),(27,136,154,114),(28,102,155,89),(29,138,156,116),(30,104,157,81),(31,58,43,66),(32,99,44,72),(33,60,45,68),(34,91,46,74),(35,52,47,70),(36,93,48,76),(37,54,49,62),(38,95,50,78),(39,56,41,64),(40,97,42,80),(82,143,105,125),(84,145,107,127),(86,147,109,129),(88,149,101,121),(90,141,103,123),(111,146,133,128),(113,148,135,130),(115,150,137,122),(117,142,139,124),(119,144,131,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,33,32),(2,31,34,9),(3,8,35,40),(4,39,36,7),(5,6,37,38),(11,49,50,20),(12,19,41,48),(13,47,42,18),(14,17,43,46),(15,45,44,16),(21,142,143,30),(22,29,144,141),(23,150,145,28),(24,27,146,149),(25,148,147,26),(51,98,91,58),(52,57,92,97),(53,96,93,56),(54,55,94,95),(59,100,99,60),(61,79,76,64),(62,63,77,78),(65,75,80,70),(66,69,71,74),(67,73,72,68),(81,82,117,118),(83,90,119,116),(84,115,120,89),(85,88,111,114),(86,113,112,87),(101,133,136,108),(102,107,137,132),(103,131,138,106),(104,105,139,140),(109,135,134,110),(121,151,154,128),(122,127,155,160),(123,159,156,126),(124,125,157,158),(129,153,152,130)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order122222224···4444444444444445510···101010101020···2020202020
size11114410102···24455551010101020202020222···288884···48888

56 irreducible representations

dim1111111111112222222244
type+++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4C4○D4D10D10D10D10D42D5D5×C4○D4
kernelC42.234D10C20.6Q8D5×C42C23.11D10C23.D10Dic54D4D10.12D4D4×Dic5C202D4Q8×Dic5D103Q8C5×C4.4D4C4.4D4Dic5C20D10C42C22⋊C4C2×D4C2×Q8C4C2
# reps1112222111112444282248

Matrix representation of C42.234D10 in GL6(𝔽41)

4000000
0400000
000100
001000
0000320
0000329
,
4000000
0400000
009000
000900
0000320
0000329
,
660000
3510000
001000
0004000
0000139
0000040
,
660000
1350000
001000
0004000
0000402
0000401

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,32,32,0,0,0,0,0,9],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,32,0,0,0,0,0,9],[6,35,0,0,0,0,6,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,39,40],[6,1,0,0,0,0,6,35,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,40,0,0,0,0,2,1] >;

C42.234D10 in GAP, Magma, Sage, TeX

C_4^2._{234}D_{10}
% in TeX

G:=Group("C4^2.234D10");
// GroupNames label

G:=SmallGroup(320,1352);
// by ID

G=gap.SmallGroup(320,1352);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,1123,346,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽